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The stability of planetary waves on a sphere 

By P. G. BAINES 
CSIRO, Division of Atmospheric Physics, Aspendale, Victoria 3195, Australia 
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The stability of individual inviscid barotropic planetary waves and zonal flow 
on a sphere to small disturbances is examined by means of numerical solution 
of the algebraic eigenvalue problem arising from the spectral form of the govern- 
ing equations. It is shown that waves with total wavenumber n (the lower 
index of the Legendre function Pg which describes the waves’ meridional 
structure) less than 3 are stable for all amplitudes, whereas those with n 2 3 
are unstable if their amplitudes are sufficiently large. For travelling waves 
(m + 0) with n = 3 and 4 and with disturbances comprised of 30 modes, the 
amplitudes required for instability are approximated by those obtained from 
triad interactions, and are smaller than those given by Hoskins (1973). For the 
zonal-flow modes (m = 0) the critical amplitudes are smaller than those pre- 
dicted by triad interactions, and are close to those obtained from Rayleigh’s 
classical criterion. 

1. Introduction 
The stability of Rossby waves on a /3-plane has been discussed by Lorenz 

(1972), Hoskins & Hollingsworth (1973) and Gill (1974) and that of Rossby waves 
on a sphere by Hoskins (1973). Although the result that Rossby waves may be 
unstable is perhaps surprising from a meteorological viewpoint, it is less remark- 
able when viewed in the light of wave interaction theory (as was done for the 
case of surface waves by Hasselmann 1967a). It has been suggested by Lorenz 
ji972; and supported by Lilly (1972, 1973) that this instability is primarily 
responsible for the loss of predictability observed in numerical atmospheric 
models, i.e. the divergence observed between the properties of two time integra- 
tions with slightly different initial conditions. 

Gill (1974) has shown that plane Rossby waves of both small and large ampli- 
tude are unstable, and that for small amplitudes the unstable disturbance forms 
a resonant triad with the primary wave. (The latter result may also be deduced 
from Hasselmann’s (19673) criterion.) McEwan & Robinson (1975) have demon- 
strated experimentally and theoretically that internal gravity waves in a 
stratified fluid are unstable and that at marginal stability this is equivalent to 
resonant interaction, and suggested that this process is a controlling factor for 
oceanic microstructure. Their analysis is based on the Mathieu equation, and 
the instability is ‘parametric’ in character. A similar type of analysis may be 
seen to apply to other kinds of linear wave fields where the governing equations 
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are essentially nonlinear, so that they sustain resonant interactions, such as 
inertial waves in a rotating fluid. It is shown in the appendix that the stability 
of Rossby waves on an infinite ,&plane is governed by a third-order equation 
akin to Mathieu’s equation, which helps to elucidate its relationship with reso- 
nant interactions (Longuet-Higgins & Gill 1967) and, by analogy with the much- 
studied classical Mathieu equation, to obtain an overall view of the stability 
characteristics. 

This paper is mainly concerned with Rossby waves on a rotating sphere, 
sometimes known as Rossby-Haurwitz waves, which have a stream function 
or vorticity of the form Pz(p )  cos m($ - unt), where p = sin (latitude), $ is the 
longitude and PF(p) the Legendre function with m the longitudinal wavenumber 
and n the total wavenumber. Compared with waves on a ,&plane the stability 
of these waves is affected by two factors: the finite size of the sphere and the 
discrete nature of the spectrum. As shown below, both of these tend to inhibit 
instability: waves with a sufficiently low wavenumber n ( < 2 )  are always stable 
and very few planetary waves are unstable for all amplitudes. 

Hoskins (1973) has considered the stability of planetary waves to a restricted 
class of disturbances, namely a single planetary wave and a zonal flow. Supported 
by some numerical integrations, he concluded that waves with zonal wave- 
numbers of 5 and less are stable whilst those with zonal wavenumbers greater 
than 5 may be unstable. However, his numerical procedure only permits waves 
with zonal wavenumbers which are multiples of 4, thus eliminating many de- 
stabilizing disturbances. In  fact, as shown below, all waves with wavenumber 
n 3 are unstable if their amplitudes (expressed in terms of the angular velocity 
of the basic rotation) are sufficiently large. Further, the critical amplitude re- 
quired for instability decreases rapidly with increasing n (rather than m), and 
for waves with Iml > 1 the disturbance does not (necessarily) contain a zonal 
flow. 

One may approach the question of the stability of waves on a sphere in a 
manner similar to that used in the appendix for a P-plane, arriving at a form 
of Mathieu equation for an arbitrary disturbance. However this is very complex 
because of the spherical geometry and instead the spectral form of the baro- 
tropic vorticity equation has been used, following Platzman (1962) and Hoskins 
(1973). The problem for the stability of any given planetary wave, including a 
zonal flow, may then be expressed as an algebraic eigenvalue problem, which 
must be truncated to a finite number of equations for numerical solution. The 
relevant equations are given in $2. In  $ 3 a criterion of Fjmtoft is used to show 
that waves with n < 3 are stable regardless of their amplitude, and the eigen- 
value problems for the stability of zonal flow and planetary waves are treated 
in $9 4 and 5 respectively. For zonal flow, the amplitudes required for instability 
lie only slightly above those required by Rayleigh’s classical criterion, namely 
the vanishing of the vorticity gradient somewhere in the flow, and the unstable 
eigenvectors show that more energy flows to lower wavenumbers than to higher 
ones in every case examined (3  d n < 9).  For planetary waves Pz  with m =!= 0 
and n = 3 or 4 and Pt the critical amplitudes are generally similar to those 
given by triad interactions alone. 
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In  5 6 the linear stability results are tested by numerical integrations with an 
inviscid spherical barotropic spectral model. The waves Pi and P;, each with 
appropriate small disturbances, are discussed in some detail; in the former case 
the growth of the instability does not lead to destruction of the primary wave 
because n is small, whereas it does in the latter case. 

2. Basic equations on a sphere 

radius in non-rotating spherical polar co-ordinates may be written as 
The equations for a non-divergent single layer of fluid on a sphere of unit 

D</Dt = 0, 5 = V2$, ( 2 . l a ,  b)  

( 2 . l c ,  a) 

where D/Dt denotes the total derivative, < the vorticity and $ the stream func- 
tion, 8 is the co-latitude, # the (east) longitude and u and v the fluid velocities 
in the easterly and northerly directions respectively. The dependent variables 
may be expressed in spectral form by expanding in spherical harmonics, e.g. 

where p = cos 0 and the <: are functions of time only, the presence of any par- 
ticular component <? also implying the presence of its complex conjugate 
We here define the Legendre functions P,"(p) such that 

following Bourke (1972) t  and Hoskins (1973),  so that 

These functions have n - m  zeros in the range ( -  1; l ) ,  and their properties are 
documented in many standard references (perhaps most graphically by Jahnke 
& Emde 1945, p. 112).  For m =+ 0, the associated waves have 2m cells around a 
longitude circle and n - m + 1 cells on a pole-to-pole semicircle. Throughout this 
paper the symbol P," will be used to denote the corresponding planetary wave. 

Substituting (2 .2 )  into (2.1 a), multiplying by P,"(p) eim+ and integrating over 
the whole sphere yields the spectral barotropic vorticity equation (Silberman 
1954; Platzman 1962; Hoskins 1973; but with slightly different notation) 

t Bourke defines P;"(p) = ( -  1 ) m  P,"(p). 

13-2 
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where y, /? and a denote pairs (my, n,,), etc., and 

where 

KyBa may also be written as K with a subscript nynBn, and superscript 
m m m denotes summation over all pairs (a,/?), but without repetition 

(i.e. no permutations). The coefficients KyBa have been evaluated by Silberman 
(1954), and are zero unless 

In, - npI -? ny < n, + nB, n, + nB -I- ny = odd,] 

Y ' a ' a c a  

(2.8) 
(mp,nB) P (-mysny), (ma,na) 9 (-mysny)* 

We also have the redundancy relations 

K YBa = - K  YaB = K -  a h  = K  Bra, - (2.9) 

where iji and /7 denote ( -ma, n,) and ( - mp, nB). These coefficients have been 
calculated numerically when necessary using routines developed by Dr W. 
Bourke of the Commonwealth Meteorological Research Centre, based on expres- 
sions given by Silberman (1954). 

It may be readily shown (e.g. Platzman 1962) that the component containing 
e ( p )  = (#)$p contains the total angular momentum about the co-ordinate axis, 
and is equivalent to a rotation about this axis with angular velocity R given by 

a = (*)q;. 
Hence (2.5) may be written as 

(2.10) 

and the linearized solutions to these equations are the Rossby-Haurwitz waves. 
These are also exact solutions to (2.11), as indeed is any sum of components 
with the same degree n (Craig 1945; Neamtan 1946). 

We consider the stability of a single wave 6, (hereafter referred to as the 
primary wave) to infinitesimal disturbances. If gal represents a zonal flow the 
appropriate linearized form of (2.11) for the disturbances is 

If cal represents a planetary wave it is best to consider the equations in a frame 
of reference rotating with angular velocity 

Q' = R[1- 2/nal(nal + I)], 
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which is the angular velocity of the wave pattern 

2CalPz (~)  cos md (m = mal, n = rial). 
The vorticity equation in this rotating frame is 

oqot + 2nia$/a+ = 0, (2.13) 

which in spectral form becomes 

, . ~ . .-.-, 
(2.14) 

where the notation is the same as above except that the time dependence of the 
aoefficients will be different. The linearized disturbance equations then are 

where gal is real in this case and the first summation is over all /3 with 

ms = my - mal, 

the second over all /3 with ma = my + mal. 

3. Fj@rtoft’s theorem and its implications for stability 
Conservation of energy in the system governed by (2.1) yields 

(2.15) 

integrating over the whole sphere. Since 

we obtain 
V2P:(,u) eim+ = - n(n + 1) Pp@) eimi, 

* A$ m 

2n=1 m= -n n(n+ 1) n=ln(n+ 1) n=l 

1 m  CE E E = - 2 C 2n- = n - = En = constant, (3.2) 

where 
A% n 

A:= C cEc2, E n = r -  
m= -n n(n + 1)’ (3.3) 

A further continuous infinity of invariants may be obtained from the vorticity 
equation, viz., 
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where 7 is any real or complex number with Re7 2 1. Equation (3.4) with 
7 = 1 is trivial and equivalent to conservation of angular momentum. 7 = 2 
yields a second quadratic invariant commonly known as the enstrophy: 

m 

therefore F = n C, A2, = constant. 
n = l  

From equations (equivalent to) (3.2) and (3.6) Pjmtoft (1953) deduced that any 
energy exchange must take place between components with (at least) three 
different values of n, and if one of three components represents a source or sink 
for both the other two, its n value must lie between those of the latter. He also 
deduced some inequalities concerning the spectral distribution of energy, the 
most important of which (Fjrartoft’s equation 44) is, in the present notation, 

FIE - 2 
n=N+1 2 < ( N + l ) ( N + 2 ) - 2 ’  (3.7) 

for specified E and F and any positive integer N .  Now the component Pi repre- 
sents rigid rotation about an axis perpendicular to the co-ordinate axis, and 
hence like P!, its magnitude (taken as zero here) must remain constant by con- 
servation of angular momentum. This permits the strengthening of Fjmtoft’s 
above inequality by using the same argument as his but omitting the modes 

Fz+lE2+ - 6 
with n = 1, giving 00 

n = N + 1  < ( N  + 4) ( N  - 1)’ 

where N 2 2 and E,, and I?!+ are the energy and enstrophy omitting modes 
with n = 1. If all the energy is initially in a mode or modes with n = L this may 
be written as 

If we consider the stability of individual modes for infinitesimal disturbances, 
f l  and 2’; must be absolutely stable by conservation of angular momentum, and 
(3.9) shows that if all energy is initially in modes with n = 2 i t  must remain 
there. The interaction rules [equation (2.9)] also show that energy cannot flow 
between Pi, Pi and Pi directly, so that these modes must all be stable, regardless 
of their amplitudes. Equation (3.9) indicates that modes with n 2 3 may be 
unstable, and it is shown below that this is in fact the case if their amplitudes 
are sufficiently large, although the amount of energy which may flow to higher 
wavenumbers n is limited. 

4. The stability of zonal flow 
We consider the stability of zonal flows whose vorticity (or stream function) 

is represented by a single Legendre polynomial Pn, where n is an integer. From 
the preceding section we know that and 3 are completely stable, and here 
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we consider values of n ranging from 3 to 9. The spectral equations governing 
infinitesimal disturbances are given by (2.12), an infinite set of linear equations 
with constant coefficients. We look for the conditions under which this system 
has unstable normal modes. Assuming exponential time dependence efot equa- 
tions (2.12) may be transformed into an infinite set of algebraic equations, viz., 

The condition for non-trivial solutions is 

det(A-hl) = 0, (4.2) 

where ‘det’ denotes ‘determinant ’, h = w/SZ and the matrix A has elements 

where Eal = Cal/!2. Since mal is zero, (2.6) requires mp and my to be equal for non- 
zero interaction coefficients. This implies that the set of equations for cB with 
ma = I is decoupled from that with mB = 2,  and so on, so that these groups of 
equations may be considered separately. In  other words, the equations governing 
disturbances of given zonal wavenumber form an independent set. 

The eigenvalue problem represented by (4.2), for values of ma ranging from 
1 to rial - 1, was solved numerically for truncated systems with given values of 
E,,. Eal was increased from zero to the point where complex eigenvalues h first 
appeared, yielding the critical amplitude for instability of mode ccl with the 
given truncation. The truncation number iVT (i.e. the rank of the matrix A, or 
the number of equations) was varied up to 20 in the important cases, and the 
values obtained for the critical amplitudes appeared to converge as NT increased, 
with an apparent approximation to within at  least two significant figures to the 
limiting value where NT = 20. In  most cases the critical amplitude decreased 
monotonically with increasing truncation number (by an amount which de- 
pended on the wavenumber but was typically of order 4, overall), so that the 
value for NT = 20 was taken as the critical amplitude. 

The eigenvalues and eigenvectors were obtained by employing library sub- 
routines provided by the CSIRO Division of Computing Research. Routine 
EIGENP, based on an algorithm by Grad & Brebner (1968) using Householder’s 
method (Wilkinson 1965, p. 290), was mostly used, with routine EIGEN, based 
on a method due to Eberlein (1962), used as a check on certain cases, notably 
those in which the eigenvalues did not decrease monotonically with increasing 
NT. In  every case so checked the eigenvalues obtained by the two methods 
agreed to at  least six significant figures. 

The critical amplitudes of the vorticity of the zonal modes, expressed in terms 
of the angular velocity of the rotation about the co-ordinate axis together with 
the zonal wavenumber of the most unstable disturbance, are given in table 1. 
With the earth’s rotation and radius the associated equatorial wind speeds are 
89.3 (‘trade winds’) and 29.5 m/s for & respectively, 25-7 and 5.44 m/s for 
& Pg, and 9-97 and 1.8 m/s for 2 P:. The mean barotropic zonal flow of the 
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Vorticity Zonal 
amplitude wavenumber Energy 

Wave d M E = d a / N ( N +  1) 

+P 0.799 
-P 0.264 
p: 0.161 

+Pi 0.362 
-4 0.0777 e 0.0564 
+ P: 01957 
- P; 0.0353 
p: 0.0292 

0.122 
0.0204 

+e 
-PO 

2 
1 
1 
3 
1 
1 
3 
1 
1 
1 
1 

5.32 x lo-* 

1.30 x lo4 
4.90 x lo4 

7.57 x 10-6 
6.84 x lo4 
2.23 x 
1.18 x 
1.65 x lo4 
4.62 x 

6.81 x 10-3 

2.01 x 1 0 4  

TABLE I. Critical amplitudes for the vorticity and energy of the zonal-flow modes, 
together with the zonal wavenumber of the most unstable disturbance. 

atmosphere, represented approximately by + e, is accordingly very stable by 
this criterion. The corresponding energy amplitudes are plotted in figure 1, 
which also shows the necessary amplitudes for instability obtained from Ray- 
leigh’s criterion for instability of a shear flow. On a sphere this has the form 

dc(p)/dp+2L2 = 0 somewhere, (4.4) 

where [ (p)  is the vorticity of the zonal flow. If [(p) = c:P,(,u) this becomes 

It may be seen that in every case the actual amplitude required for instability 
lies only slightly above the necessary value obtained from (4.5).  

The stability criteria separate the modes into two distinct groups, each with 
its own approximate power-law dependence on (see figure 1): modes e, Pi, G, 
etc., with positive coefficients are much more stable than the others. In  addition, 
all the modes of the second group (even modes and negative odd modes) are 
most unstable to disturbances of zonal wavenumber one, which is not the case 
for the first group. 

An inspection of the eigenvectors (c:, [& . . .) representing the most unstable 
disturbances to each zonal-flow harmonic Pi indicates that they have no uni- 
form structure other than a general tendency for the magnitude of the com- 
ponents cgi to decrease (not always monotonically) as n2 increases. If n is odd, 
all the components with ni odd are zero (i.e. the most unstable disturbance has 
n, even). Integral constraints on the unstable eigenvectors may be obtained as 
follows. The equation for an infinitesimal disturbance l j rZ  to an initial zonal flow 

with total wavenumber L in a rotating system is 
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10-2 

10-3 

10-4 

10-5 

2 3 4 5 6 7 8 9  

It 

FIGURE 1. Critical amplitudes in terms of energy (units na2R2, where a is the earth’s 
radius) for the zonal-flow modes Px. The continuous lines drawn have the slope indicated 
and the dotted lines connect the corresponding points obtained from Rayleigh’s criterion. 

where the suflkes 8 and 9 denote derivatives. Multiplying by @,, integrating 
over the sphere and invoking Green’s theorem yields 

where w is the rate of working by ‘Reynolds stresses’. Multiplying (4.6) by 
Vzq,  yields 

(4.8) 
a i  
at2/s (V2$,)2d8 = L(L + 1) w, 

and eliminating w between (4.7) and (4.8) gives (Karunin 1970) 

apyat = L(L + 1) aEyat, (4.9) 
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where El and Fl are the energy and enstrophy of the disturbance, which may be 

(4.10) 

where ideally k is infinite and the sum does not include ni = 1 or L since these 
form no part of an unstable disturbance. For a growing mode, each Eni may be 
written as Eni = Bnieht, 

where h has a positive real part and the f n i  are constants. Substituting in (4.9) 
and normalizing the Bnt yields 

expressed as lc k 
El = ;Z; Eki, Fl = ;Z; n,(ni+ 1) ELd, 

i= 2 ni=2 

k k 

ni=2 n=2 
;z; Bni = I,  n,(n,+ qfni = L(L+ 1). (4.11) 

From these relations we may deduce from Fjmtoft’s argument 

(4.12) 

which corresponds exactly to (3.9) except that gL is necessarily zero. 
Equation (4.12) refers to the relative rate of flow of energy to modes with 

wavenumber greater than N ,  and if N = L, the upper bound on gN is less than 
Q only for L = 3. It has been pointed out by Merilees & Warn (1975) that 
Fjsrtoft’s argument for triad interactions that more energy must flow to lower 
wavenumbers than to higher ones when energy is lost by a single mode is spurious, 
although this happens in a majority of cases. However, for the truncated eigen- 
vectors obtained numerically with NT varying between 12 and 20,g’ was always 
less than 0.5, implying a greater flux of energy to the lower wavenumbers. Also, 
the corresponding ratios of the flux of mean-square vorticity to higher wave- 
numbers to the flux to lower wavenumbers are close to unity for all L < 9 
except L = 3, where they have values of 2.1 (positive vorticity coefficient) and 
1-65 (negative vorticity coefficient). 

5. The stability of planetary waves 
The stability of planetary waves on a sphere has been discussed by Hoskins 

(1 973), who considered perturbations consisting of a single planetary wave 
together with a zonal flow. This form of disturbance was chosen because of the 
results of numerical integrations, which were, however, restricted to zonal 
wavenumbers which are multiples of 4, so that other types of disturbance were 
prohibited. 

We consider first of all the stability of planetary waves to perturbations con- 
sisting of (a)  a single planetary wave and a zonal flow as per Hoskins (1973) 
and ( b )  two planetary waves neither of which is a zonal flow. The criteria for 
instability due to disturbances of type (u) may be obtained from equation (4.17) 
of Hoskins’ paper (to which the reader is referred for the relevant analysis), 
and these are presented in table 2 for all planetary waves up to a wavenumber of 
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1 2 3 4 5 6 7 8 9 
N\M 
3 2-0 - 2.087 
4 0.7734 - 1.551 0.8248 
5 0.3972 - 0.8680 0.8316 0.5161 
6 0.2359 - 0.5101 0,4540 0.4155 0.3662 
7 0.1535 1.1974 0.3278 0.3245 0.3218 0.3062 0.2775 
8 0.1065 0.3601 0.2258 0.2368 0.2472 0.2483 0.2390 0.2194 
9 0. 07737 0.2148 0.1638 0-1774 0.1914 0.1994 0.2001 0.1933 0.1787 

TABLE 2. Critical amplitudes for the vorticity I{:/Cll of planetary waves Pf subject to 
disturbances consisting only of a single planetary wave and a zonal flow, 8s in the analysis 
of Hoskins (1973). 

9 . t  For an initial unstable wave Pi the most destabilizing disturbance consists 
of the wave Pk-, plus the interacting zonal-flow harmonics, which act in unison; 
for an initial wave P," with m 2 2 the disturbance is =+, plus zonal flow. 

For disturbances of type ( b )  we consider (2.15) with only two disturbance 
components <, and C2 (and their complex conjugates), with wavenumbers 
m,, n,, m2 and n2, where m,,m2 > 0. Consideration of the selection rules (2.6) 
and (2.8) shows that the only mutually interacting pairs are those which have 
m, m2 = ma, the zonal wavenumber of the primary wave. It transpires that, 
for every wave with ma > 1, the members of the triad with the lowest critical 
amplitude satisfy the condition m,+m, = ma, and not ml-m2 = ma; if ma = 1 
the critical amplitudes for all cases m, - m2 = ma are greater than those given in 
table 2. The equations for disturbances with m, + m2 = ma take the form 

where u = ml-m2 ma, 7~ = n, n2 nu, T = m2- m, ma and p = n2 n, nu, together 
with their complex conjugates. Eliminating c2 gives 

where 

(5.3a) 

I< = Ii: = -KZ. 

j- l'he critical values for the waves P: and P: agree with the lowest curve of figure 5 (b) 
of Hoskins (ems apparently representing I[;/), but the values for P$+l, M < 6, do not. 
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2 3 4 5 6 7 8 9 
N\M 

0.2036 
Pi, Pi 

Pi,P,B P&Pa, 

P&P; P;,P; Pi,PS" 

P:,P; Pi,Pi Pi,P,4 P&Pi 

Pi, P:z Pi, P;o Pi,  Pi Pi, P: Pi, Psp 

p?",p:4 pS',p;, p; ,eo 3,p:z 3.G e93 

0.2102 0.4584 

0.1735 0.0402 0.0870 

0.00768 0.0132 0-0346 0.0375 

0.00728 0.0578 0.0 0.0521 0-0497 

0.0201 0.0309 0.00613 0.023 0.0331 0.0558 

0.0 0.00599 0-00266 0.0233 0.0120 0.00695 0.0 
pfl',p:4 ptlp& pi9es e7p& piSel E*p& p i 9 e d  

TABLE 3. Critical amplitudes for the vorticity lC/nl of planetary waves P f  subject to 
disturbances consisting only of two planetary waves neither of which is a. zonal flow. 
The two waves forming the most unstable disturbance for emh PF are indicated. 

Solutions of (5.2) of the form ept  will be unstable if 

which requires nu to lie between n, and n2 as expected. The minimum amplitudes 
A = 2Q/Q for which inequality (5.4) is satisfied for each primary wave, and the 
two components of the corresponding unstable triad, are given in table 3. Except 
for primary waves with a zonal wavenumber of one the critical amplitudes are 
all considerably smaller than the corresponding ones in table 2, so that the pre- 
ferred form of disturbance consists of two planetary waves. For any initial 
wave P$ there are a number of unstable triads, and those given in table 3 are 
only those with the lowest critical amplitudes. For three waves, namely Pt, Pg 
and Pi, the critical amplitudes are zero because of the vanishing of the last term 
in (5.4). This is in fact just the frequency condition for resonant interaction 
between these waves and the other members of their appropriate triads, as 
discussed in $1. 

In  order to discuss the stability of planetary waves completely the eigenvalue 
problem for (2.15) must be solved in the same manner as in $4, extended to 
sufficiently large wavenumbers. The number of equations in each particular 
eigenvalue problem may be reduced by use of the selection rules, which show that 
interacting disturbance components may be grouped as shown in figure 2, and 
each of these groups treated separately. The eigenvalue problem for the onset 
of instability has been solved for all cases for all modes with n = 3 or 4 and for 
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N odd 

N even 
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n even 

nt even 

n odd 

m even 

m even 

n even 

m odd 

n odd 

m odd 

m odd 

M odd 

n even 

n odd 

FIGURE 2. For a given primary wave P$ the boxes show independent groups 
of interacting disturbance waves e. 

NT = 30 Triad 

0.789 
0.403 

0.204 
0.082 
0.077 
0.216 
0.296 
0.040 

n even 
n even, 
rn odd 
n even 
n-rn even 
m odd 
n - m even 
rn even 
n odd, 
rn odd 

2.0 Pi +zonal modes 
0.454 Pi,Pi 

0.204 Pi, Pj 
0.773 Pi +zonal modes 
0.069 P&Pi 

0.468 Pf1,Pi 
0.040 P&P, 

0.210 4, P: 

TABLE 4. Critioal amplitudes for instability of planetary waves obtained for NT = 30, 
compared with the values from tables 2 and 3 for the most unstable triads. 

the mode P& with the truncation number NT = 30 for each case.? For this value 
of NT the critical amplitudes seemed to be close to asymptotic values for large 
N,. The critical amplitudes A,  obtained for the vorticity A = 2Q/B are given 
in table 4, where they are compared with the corresponding triad values from 
tables 2 and 3. For each mode, these two figures are generally of the same order 
of magnitude and in most cases bear a striking similarity; for truncation numbers 
NT less than 30 the similarity with the triad values is not as good (for the two 
waves where the comparison is least satisfactory, namely Pi and Pi, the triad 

t This ensures the inclusion of most modes for which n Q 8, and for P: and 3, all 
modes for. .which n < 10. 
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FIGURE 3. Growth rates At (the growth factor for 1 day is exp (27rA,)) for the fastest- 
growing eigenfunctions for the unstable modes indicated, as a function of their vorticity 
amplitudes A scaled with their amplitudes A, at  the onset of instability, given in table 4. 
Continuous lines denote those eigenfunctions which become unstable when A = A,, 
and for these eigenfmctions the components of the most unstable triad are prominent; 
drtshed lines denote eigenfunctions with the highest growth rate for each primary wave 
when these are different from the eigenfunction which first becomes supercritical; some 
principal components of these latter eigenfmctions are indicated. Other unstable eigen- 
functions appearing at supercritical values of A and with lower growth rates have been 
omitted. 

is not a triad at all but consists of a planetary wave (Pi or Pi) and all the inter- 
acting zonal modes; if the most unstable ‘pure’ triad is considered the critical 
amplitudes are closer to  the NT = 30 values). This similarity leads to the con- 
jecture that the critical amplitudes for the most unstable triads for all planetary 
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waves (excluding zonal flows) provide at least a good approximation to their 
critical amplitudes for the complete infinite system. The reasonableness of this 
supposition is supported by the experimental results of McEwan (1971) for the 
analogous system of a discrete spectrum of interacting internal waves in a finite 
tank: the critical amplitudes for forced internal waves agreed very well with their 
theoretical values obtained from calculations based on triads, after allowing for 
dissipation. 

For every unstable planetary wave considered, the eigenfunction correspond- 
ing to the unstable eigenvalue at the onset of instability ( A  = A,) contains the 
components of the most unstable triad as principal components. Growth rates 
for amplitudes larger than critical are shown in figure 3, where continuous lines 
refer to modes which commence growth a t  A = A,. Other unstable eigen- 
functions with different principal components may appear for supercritical 
values of A, and where these have growth rates greater than those of the initial 
eigenfunctions for 1 < A/A, < 10 they have been denoted by dashed lines. It is 
interesting to note that, as with the triad interactions, all the components of 
each unstable eigenfunction have the same time dependence (real and imaginary) 
when viewed relative to the frame rotating with the primary wave. 

6. Numerical integrations for P: and P! 
Two integrations using the non-divergent form of the barotropic spectral 

model developed by Bourke (1972) were carried out to examine the behaviour 
of the system beyond the limits of linear theory, the &st, for P:, lasting for 12 
days with a rhomboidal truncation number J = 10 (i.e. all waves with 

/MI c J ,  1 < n < IMI+J 

included) and a 4 h time step, and the second, for e, lasting for 20 days with 
J = 15 and a 1 h time step. These truncation numbers were chosen on the 
basis of avoiding truncation effects as discussed by Puri & Bourke (1974), and 
economical computer time. 

We consider first e, with positive vorticity coefficient (the atmospheric case), 
but before discussing the spectral-model integration we consider the behaviour 
of the ‘most unstable triad’ in isolation for both sub- and supercritical ampli- 
tudes. Pg is the unstable member of a resonant triad containing waves Pg and 
Pi, with a critical amplitude from linear theory (for the vorticity) of 1-08 SZ. 
Results of considering this triad in isolation are shown in figure 4 for two sets of 
initial amplitudes. If one writes 

cg = C, cg = $Aeia, ci = &Bei$, 8 = P-a, (6.1) 

so that A ,  B and C denote the vorticity amplitudes? of the respective waves, the 
governing equations are 

A = 0.1543 BC sin 8, B = 0.38576 ACsin 8, C = 0.27003 AB sin 8, 

8 = - 0.46667 i2 - 0.5588 C+ (0.38576 A/B + 0-1543 B/A) C 00s 8. (6.2) 

for rn = 0, and 7 The amplitude of the vorticity or stream function refers to 1 El or 
21(3 or 21$3 form $: 0. 
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FIGURE 4. Results for two numerical integrations of (6.2) for the interacting triad (e, Pi, Pi) with the initial amplitudes of P,O on either side of the critical amplitude 
(indicated by arrow) given by linear stability theory. The lowest curve shows the phase 
difference 5 between ci and C:. 

These equations were integrated using a fourth-order Runge-Kutta method 
with a time step equivalent to 1 h for two amplitudes of on either side of the 
critical amplitude (0.983 L2 and 1-3 L2) and with the amplitudes of Pi and Pt 
smaller by a factor of 100 in each case. The difference between the stable and 
unstable cases is evident: for the former, all the functions oscillate with only 
slight variations in amplitude, whereas for the latter the disturbance waves 
increase by two orders of magnitude. The functions are periodic with the expected 
elliptic-function (Plateman 1962) appearance. 

The spectral-model integration, whose results are shown in figure 5, wm 
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FIGURE 5. Results in terms of vorticity amplitudes from integration of a barotropic 
spectral model (see text) with primary wave +Pi and disturbances as shown. Thelowest 
curve shows the phaae difference 8 between [i and Cg, for comparison with figure 4. 

begun with the same initial conditions as for the stable triad case, except that 
the waves Pi and Pi were added with the same initial amplitude and phase as 
PE and Pz. All waves which reach amplitudes above 0.01 Q are shown, except 
for several whose amplitudes only just exceed this value. The critical amplitude 
for this degree Qf truncation (NT = 10 in this case) is 0.805 R (~1s. 0.799 Q for 
J > ZO), so that the P$ mode is unstable; the modes Pi, Pi, Pi and Pi (and 
P&, and P&, which are not shown) all grow exponentially as components of the 
eigenvector comprising the destabilizing disturbance. The modes e, P: and 
together with Pt appear at  a later stage as a result of mutual interactions between 
the growing waves with m = 2 when their amplitudes have become appreciable. 
The waves Pi and P: (which constitute a growing disturbance for Q negative) 

14 F L M  73 
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Days 

FIGURE 6. Results in terms of stream-function amplitudes with the earth’s radius and 
rotation, from integration similar to that for figure 4 with primary wave e. With three 
exceptions, only modes with amplitudes greater than 2.0 at the end of the day 7 are shown, 
there being a multitude of curves at lower amplitudes exceeding 0.1. 

initially oscillate like the stable triad of figure 3, and appear to interact only 
weakly with the other modes shown. In  this integration the primary wave 
retains most of its initial energy (at least over 12 days) because, of the energy 
it loses, a substantial fraction must flow to waves with n < 3, i.e. n = 2. The 
only such mode interacting strongly with Pg here is Pi, and thisis clearly coupled 
to Pi, causing a quasi-oscillatory behaviour which limits its growth. In  summary, 
as predicted by linear theory, the expansion of the spectrum has lowered the 
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critical amplitude for P: below that predicted for the simple triad, but the growth 
of the disturbance has been limited to about one order of magnitude, apparently 
because of the small number of interacting modes with n < 3. 

Results for the first 7 days of the integration with Pt as the unstable wave are 
shown in figure 6, where the variable employed is the magnitude of the stream 
function in units of km2/s (related to the vorticity via the earth’s radius). The 
initial amplitude of Pt (l</Ql = 0.815) is approximately the same as that used 
by Phillips (1959), and subsequently by several others, to test the efficacy of 
numerical models. The waves P:, Pg, Pj, Pi, P:, Pi and P$ were also introduced, 
all with vorticity coefficients [F of the same magnitude and phase but much 
smaller than {t and 180” out of phase with it, yielding the initial stream-function 
amplitudes shown in figure 6. 

At this amplitude ( A  N 20AJ Pi has a number of unstable eigenfimctions, the 
most rapidly growing of which is that which first becomes unstable when 
A = A ,  and has as its principal components Pi, Pi, P,”, P: and F;. The growth 
rate for this mode is hi = 0.0803 (the growth factor for 1 day is exp(SITh,)), 
yielding an e-folding growth time of 2 days, which is in good agreement with the 
observed growth rates of Pi and P;. Another unstable eigenfunction, with 
principal components Pj, Pi, P: and P& has a growth rate of 0.0418, giving an 
e-folding time of 3.8 days, so that the agreement for these modes is less satis- 
factory. Continuing the integration beyond day 7 shows that the amplitude of 
P: continues to decrease monotonically, so that half its energy has been lost by 
day 15 and it has completely lost its dominance by day 20, when several other 
modes have greater energies, and there is no indication that it would re-emerge 
from the large number of other modes with comparable amplitude. 

Hence for Pi at the above amplitude the growth rate of small disturbances as 
predicted by the linear theory is of a magnitude comparable with that obtained 
with a J = I0 spectral model. This growth rate is maintained beyond the limits 
of the linear theory, and for disturbances introduced a t  approximately 1 yo of 
the amplitude of Pi, the ‘destruction time’ for the primary wave is of the order 
of 2-3 weeks. 

The author is grateful to Dr W. Bourke and Dr K. K. Puri of the Common- 
wealth Meteorological Resea’rch Centre, Melbourne, for numerous discussions 
concerning spectral models and carrying out the integrations described in $6, 
and to Dr A. D. McEwan for various discussions on resonant interactions. 

Appendix. The infinite ,&plane 
Gill (1974) has considered the stability of plane non-divergent Rossby waves 

on an infinite /3-plane for small and large values of M = UK2//3, where U is the 
velocity amplitude of the planetary wave and K is its wavenumber. He found 
them to be unstable in both these limits and, presumably, in between as well. 
For small M the appropriate form of disturbance consists of the two components 
of a resonantly interacting triad. This problem may be approached in a slightly 
different manner as follows. 

14-2 
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Following Gill’s notation, if the initial or primary wave is given by the stream 
function 

$ = (U/K)sinB, B = kx+Zy+wt,  (A 1) 

where h’% = /3k, Ii2 = k2+Z2, (A 2) 

v2$t +p$x + (u/K) cos e[lc(vzzl. + k2$)y - z(v2$ + l c 2 1 ~ . ) , 1 =  0. (A 3) 

the equation for the disturbance stream function $ is 

If we take K-l and K//3 as the units of length and time respectively the non- 
dimensional form of this equation is 

V2$t + $x + M cos B[f(V2$ f $)y - !(V2$ + $),I = 0, (A 4) 

where ( & j )  = (k/K,Z/K). The most simple general solutions to this equation 
have the form 

1 ~ .  = f(e) e ~ w ~ + q ~ + ~ t ) .  (A 5) 

Substituting this in (A 4) gives the equation for f: 

f” + i(a, f Mb, cos 0)f” - (a, + Mb, cos S ) f ’  - i(a, + Mb, cos 0)f = 0, (A 6) 

where the coefficients a, and b, are functions of &, %, p ,  q and 7. Equation (A 6) 
is a third-order version of the Mathieu equation, to which Floquet’s theorem 
applies, so that it has solutions of the form eimeP(B), where P(B) is periodic 
with period 2n. However, the exponential factor eime may be regarded as being 
absorbed into the factor ei@x+pu+llt) so that it is sufficient to look for periodic 
solutions of (A 6). If 1M is small one may expand the solution in a Fourier series, 
substitute into (A 6) and equate coefficients of powers of M in a manner similar 
to (for example) Rhines (1970, $ 2 ) .  The details are comparatively straightforward, 
and i t  transpires that if M is very small the equation has solutions with real 
p ,  q and 7 except when 

a, + nu, + n2a2 + n3 = O(M) ,  

where n is an integer. If n = 1 it may be shown that this implies that two compo- 
nents of the Fourier series are O(1) whilst the remainder are O ( M )  and that 
these two components form a resonant triad with the primary Rossby wave. 
If p and q are regarded as real, 7 is complex; the growth rate (the imaginary 
part of 7) increases linearly with M as M increases, as does the range of values 
of (p2+  q2)a for which unstable solutions exist. Higher values of n correspond to 
higher-order wave interactions. The picture obtained is very similar to that of 
the classical Mathieu equation, and by analogy one would expect the unstable 
regions to broaden so as to cover almost all p and q as M increases. 
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